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Abstract. In this paper, a general framework for myoelectric human-
robot interfaces for grasp-oriented tasks is presented. In particular, the
aspects of intent detection, control and perception are all three inte-
grated in the framework. Particular attention is devoted to provide a
minimal-training procedure for the user, and to convey sensory feedback
information from contact force sensors in a compact manner, by means of
a single vibration motor to foster practical real-world usage of the inter-
face. Specifically, in the proposed framework, the user’s motor intention is
estimated from electromyographic measurements exploiting the concept
of muscular synergy, together with an unsupervised learning approach
that enables a short and simple algorithm calibration. Then, the pos-
tural synergy concept is exploited in an encoding-decoding fashion, in
order to communicate the user’s hand closure level to the robotic hand,
i.e. exploiting kinematic dimensionality reduction. Moreover, a rough es-
timation of the internal grasping force applied by the robotic hand is
exploited for the generation of a sensory substitution feedback, which is
applied to the user by means of vibrotactile stimulation. After describing
the general structure of the proposed framework, we show a practical de-
sign for a real interface implementation. Finally, experimental tests with
4 näıve subjects are reported demonstrating the actual effectiveness of
the approach – in terms of mean and standard deviation of grasp strength
reference trackings – in fine object grasping tasks.

Keywords: Robotic Hand, Grasping, Electromyography, Postural Syn-
ergies, Vibrotactile Feedback

1 Introduction and Research Context

Robotics is currently experiencing a growing demand for a closer cooperation,
interaction and integration with humans. Driven by this need, in the recent years
a new generation of robots characterized by natural and intuitive human-machine
interfaces was developed, in which the design steered towards human-inspired
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solutions, as a road to replicate the human ability and flexibility in performing
motor tasks. A key element in the general framework of Human-Robot Interfaces
(HRIs) is the so-called human-in-the-loop integration, where the human-machine
interaction is a fundamental and constitutive element of the system design.

To enable a natural interaction between humans and robots, a major chal-
lenge is to leverage on signals acquired from the human body to communicate
with the machines. Surface skin ElectroMyoGraphic (sEMG) signals are widely
popular in several scenarios, ranging from rehabilitation to robot control, and in
particular they are often exploited as an interface between human subjects and
robotic hands. With this respect, it is worth noticing that the human hand shows
remarkable capabilities in object manipulation, whereas, in contrast, robotic de-
vices are chracterized by poor performance in fine physical interaction with ob-
jects and their control is still a big challenge in the scientific community [1].
However, the configuration space dimension of the human hand can be reduced
– considering a set of common grasping tasks – thanks to the concept of postural
synergies [2], according to which the grasp synthesis for a large set of daily-life
objects is achievable by a linear combination of a limited set of dominant hand
postures, commonly referred as postural synergies or eigenpostures.

Aiming to reproduce the human’s intention on a robotic device, machine
learning techniques are widely used to improve the correlation between muscle
activity measured through sEMG on a human subject and the corresponding mo-
tion commanded to a robotic hand. Several authors explore different classifiers,
such as neural networks [3], Linear Discriminant Analysis (LDA) [4] or Support
Vector Machines (SVMs) [5]. However, classifier-based approaches present sev-
eral drawbacks, such as long training periods, large demand of human time for
data labeling and limited set of implementable task or action classes, resulting
in limited affordability and flexibility of the human-machine interface.

To overcome these limitations, several supervised machine-learning-based re-
gression algorithms have been implemented by the research community. The
advantage of this method lies in the possibility of continuously controlling the
DoF, so that ambiguities in input signals do not lead to totally unwanted results
as in case of classifiers. However, despite several positive outcomes, regression-
based ME HRIs presents several reliability issues. This is likely due to two main
assumptions on which this method relies: invariance of the sEMG signals with re-
spect to subjects and time [6] and accuracy/reliability of the data labeling for the
algorithm training. These conditions are hardly satisfied in practice – both for
intact users and rehabilitation applications – resulting in degraded performance
and instability in the robotic hand interface. Additionally, the knowledge gained
in the past decades about the neurophysiological processes underlying natural
movements, such as muscular synergies, is not exploited in the supervised ma-
chine learning framework. For these reasons, in the present work we propose an
ME interface for robotic hands based on unsupervised machine learning tech-
nique in which data regression is implemented by means of a matrix factorization
approach, thanks to the modelling of the human’s neuro-motor system combined
with muscular and postural synergy concepts. In this way, the training proce-
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Fig. 1. The general framework for grasp-oriented myoelectric HRIs preseted in this
article.

dure and the data labeling is not necessary, and only an extremely simple and
fast calibration data acquisition is required.

Another important aspect related to the use of myocontrolled robotic hands
for the execution of grasping tasks is the availability of an artificial sensory feed-
back related to the grasp strength. The most common methods are patterned
electrotactile, mechanotactile, or vibrotactile stimulation of the skin, in accor-
dance with the general approach known as sensory substitution [7]. In the present
work, we focus on the vibrotactile feedback, i.e. the use of vibration motors to
deliver skin mechanical stimulations. Note that vibrotactile feedback is not new
at all, since it has been already studied in several works [8–10]. However, despite
the fact that many works answered the question if vibrotactile force feedback
can help the user in executing grasping operations (and the problem is still open
[11]), in this work – since a grasp-oriented interface for practical applications is
concerned – we will focus on how to enable the user to precisely reproduce grasp
strength reference values exploiting vibrotactile feedback with a myocontrolled
robotic hand. For this reason, the main contribution of this work consists in
the presentation of a complete myoelectric human-robot interface framework for
robotic hands control, in which the user provides commands to the robotic de-
vice, equipped with contact force sensors mounted on the fingertips, and receives
an information that synthesizes the interaction force during grasping via a simple
vibrotactile device. In this framework, the detection, the control and the per-
ception aspects are all considered together with the design and implementation
issues in a synergy-based approach. Other important features we embedded in
the proposed framework are the minimal training effort, the independent force
regulation of the fingers to adaptation the grasp to objects, a sensory substi-
tution approach based on contact force sensors measurements for the use with
EMG signals.

In the following, the proposed framework is presented together with its prac-
tical implementation. Moreover, the experimental evaluation of the framework
is carried out and the results are reported and analyzed.
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2 Synergy-based framework for myoelectric HRI

2.1 General Structure Overview

The framework presented in this work for grasp-oriented myolectric interfaces is
depicted, in its structure, in Fig. 1. In the figure, the different blocks composing
the bidirectional chain of the human-robot’s interaction are represented, subdi-
vided in the areas of (i) Human, (ii) Myocontrol, (iii) Robotic Hand Controller,
(iv) Robot and (v) Sensory Substitution Feedback.

The Human area is the interface zone in which the neuro-motor information
is gathered from the user by means of measurements related to some physiologi-
cal activity – in particular, in this framework we specifically consider the sEMG
signal. This general concept is discussed from a design point of view and imple-
mentation case in Subsec. 2.2, in terms of electrodes, data acquisition and signal
processing. At the same time, also the interfacing to the sensory feedback stimu-
lation is here located, as reported for the real case scenario in Subsec. 2.4. In the
Myocontrol area, the human’s intent interpretation takes place: in the proposed
framework this is based on a modelling of the sEMG-wise intent generation,
lying on the exploitation of the muscular synergy and neural drive concepts,
with the specific aim of applying unsupervised learning techniques in order to
have minimal training sessions of the myocontrol algorithm by the user of the
interface. Here, also the concept of postural synergy is exploited, in order to en-
code the human kinematic information in a neuro-physiologically compact form
(i.e.: dimensionality reduction). Accordingly, the Robotic Hand Controller area
is composed by a synergy-based decoder of the motion, that in this way can be
provided as input for the lower-level servomotor controller of the anthropomor-
phic grasping device, providing appropriate torques according to the requested
behaviour – details of this concepts in a practical sense are illustrated in Subsec.
2.3. The Robot area includes the robotic hand, which is equipped with contact
force sensors both for sensory feedback generation and for servomotor controller
in order to adapt to different object shapes (hardware and design aspects are re-
ported in Subsec. 2.3). Then, the interaction forces exchanged between robot and
external world are interpreted and modulated within the Sensory Feedback Sub-
stitution area, in which the signals detected by the contact sensors are translated
into a meaningful stimulation for the human, which is provided by a vibrotactile
actuator for the feedback delivery (the practical implementation is reported in
Subsec. 2.4).

2.2 Factorization-based Myocontrol

sEMG Acquisition Setup and Pre-Processing The sEMG signal acquisi-
tion hardware is based on the Cerebro board [12]. The data are acquired at 1 kHz
and streamed to a nearby computer using the onboard Bluetooth interface. The
placement of the electrodes is conceived to cover the portion around the forearm
in proximity of the Flexor Digitorum Superficialis and the Extensor Digitorum
Communis muscle bellies. As can be seen in Fig. 2, 16 disposable surface skin
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Fig. 2. Location of the sEMG electrodes on the forearm.

electrodes are arranged to form an armband composed by 8 pairs of differential
electrodes uniformly distributed, obtaining in this way 8 sEMG signals. Then,
a standard online filtering procedure is implemented, consisting of: (i) a 50 Hz
notch filter; (ii) a 20 Hz high-pass filter; and finally (iii) the root mean square
(RMS) value of the signal is calculated over a 200 ms window.

Synergy-Based Model of Human’s Hand Closure Motion Control Let
us consider the RMS value of the online 8-channel sEMG acquisition (see Sec. 2.2)
Eon(t) ∈ R8×1. We suppose that at each time instant this multidimensional sig-
nal can be expressed as the product of the muscular synergy matrix SM ∈ R8×2d

and the neural drives Uon(t) ∈ R2d×1 [13], where d is the number of DoF acti-
vated by the muscles that generate the muscle activity Eon(t):

Eon(t) = SMUon(t). (1)

Note that, while Eon(t) is known, in eq. (1) SM and Uon(t) are the unknowns.
The concept of postural synergies is exploited in order to consider the overall

opening and closing of the human hand as a unique DoF, in particular the only
one activated by the muscles generating the muscle activity Eon(t). Moreover,
such movement can be considered as a single synergistic motion, given by one
specific postural synergy. Therefore, according to this consideration, we assume
Eon(t) expresses the muscle activity during the regulation of such single synergis-
tic DoF, which means that d = 1. With these assumptions in mind, it is possible
to consider two antagonistic actions, namely “generalized” flexion and extension,
for the actuation of that synergistic DoF, i.e. the hand closure. Similarly, we can
also consider two neural drives that activate such antagonistic actions. In this
way, exploting the antagonistic actuation concept [14], it is possible to write the
matrices in eq. (1) as

SM =
[
se sf

]
, Uon(t) =

[
ue(t)
uf (t)

]
, (2)



6 Roberto Meattini et al.

where se, sf ∈ R8×1 are the extension and flexion components of the muscular
synergy matrix and ue(t), uf (t) ∈ R are the extension and flexion components
of the neural drives. Equations (2) and (1) represent the sEMG model during
the synergistic opening/closing motion of the human hand. This model can be
exploited online to detect the user’s intent to open/close the hand. To this
end, it is necessary to estimate the muscular synergy matrix SM from a sEMG
calibration recording (filtered as explained in Sec. 2.2) containing n data samples
collected in a matrix Eoff ∈ R8×n, corresponding to the muscle activity during
the execution of a simple open and close motion of the hand for two times.
Therefore, on the basis of (2) and (1), Eoff can be expressed as

Eoff = SMUoff, (3)

with

SM =
[
se sf

]
, Uoff =

[
uT
e

uT
f

]
, (4)

where Uoff ∈ R2×n is the matrix of the offline neural drives composed of the
extension and flexion components ue, uf ∈ Rn×1 (note that they are not a
function of time in this case). Taking into account (3), and on the light of the
a priori knowledge of a unique synergistic DoF activated during the calibration
process, it is possible to solve (4) with respect to SM and Uoff. Consequently, a
factorization algorithm can be applied to compute the SM . In this way, once the
muscular synergy matrix is estimated, it is possible to use its pseudo-inverse S+

M

to online compute the neural drives of the human hand opening/closing motion
as

Uon(t) = S+
MEon(t).

In order to obtain a proportional control signals for the grasp control, the
concept of the antagonistic actuation model [14] is exploited. Two antagonistic
actions are considered, representing two groups of flexor and extensor hand mus-
cles located in the forearm, that control the synergistic DoF and the stiffness
level of the hand. According to this concept, the online estimated neural drives
are linearly combined to obtain the closure hand reference ρref(t) control signals
as

ρref(t) = a (ue(t)− uf (t) + b) (5)

where a and b are proper constant values that scale ρref in the range [−0.5, 0.5].

2.3 Human-like Robotic Hand Controller

The UB Hand: Structure and Sensory equipment The University of
Bologna Hand (UB Hand) is a robotic hand with an anthropomorphic structure
[15, 16], see Fig. 3(a). Each one of the 5 fingers, characterized by 3 DoF, is
fully actuated via 5 servomotors (Dynamixel RX-24F) located in the forearm
whose motion is transmitted by inelastic tendons, which are properly coupled
and routed in the finger structure. Furthermore, the UB Hand is equipped with
three semi-spherical contact force sensors (OMD-20-SE-40N Optoforce [17]), able
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(a) The UB Hand. (b) Force sensor. (c) Noitom Hi5 Glove.

Fig. 3. The UB Hand, contact force sensor and Hi5 Glove.

to detect the magnitude of forces acting along the x, y and z directions as shown
in Fig. 3(b), namely fx, fy, fz. The three sensors are mounted on the fingertip
of the thumb, index and middle fingers by means of a 3D-printed support (see
Fig. 3.) In this work, the norm of the force vectors measured the sensors is used.

They are denoted as |fi| =
√
f2
x,i + f2

y,i + f2
z,i, where the subscript i = {T, I,M}

refers to Thumb, Index and Middle fingers, respectively.

Synergy-based Hierachical Controller In order to control the overall robotic
hand, a proper mapping between the nm tendons actuating the joints, each one
driven by a servomotor, and the nJ joints of all the hand fingers exists. This
control architecture is characterized by a three-level hierarchical structure, with
three different levels: motor, joint and synergy. At the lowest level, a stiffness
control has been implemented [18]. Therefore, the Dynamixel servomotors are
actuated according to

τm(t) = Km(θref
m (t)− θm(t)) , (6)

where τm ∈ Rnm is the vector of motor torques, Km ∈ Rnm×nm is the diag-
onal matrix defining the motor stiffness, and θref

m , θm ∈ Rnm are the motors
reference and the actual position, respectively. At the joint level, the mechanical
configuration of the tendon-based transmission system defines a linear mapping
H ∈ Rnm×nJ between joint and motor configuration variables (for more details
refer to [15, 16]). This mapping can be used to deduce the reference angle of the
motors corresponding to a given joint configuration θref

J , i.e.

θref
m (t) = H θref

J (t). (7)

By combining (6) and (7) it is possible to deduce the stiffness relation induced
at the joint level by the motor control:

τJ(t) = KJ(θref
J (t)− θJ(t)) , (8)
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where KJ = HTKmH ∈ RnJ×nJ defines the joint stiffness matrix.
Finally, at the the higher synergy level, the joint reference configuration θref

J is
computed as reported in the following.

Let
θ̇ref
J =

[
θ̇ref
T θ̇ref

I θ̇ref
M θ̇ref

R θ̇ref
P

]T ∈ RnJ

be the vector of the robot hand joint velocities, where θ̇ref
i =

[
θ̇ref
i,1 θ̇

ref
i,2 θ̇

ref
i,3

]T
de-

notes the velocities of a single finger, with i = {T, I,M,R, P} indicating thumb,
index, middle, ring and pinkie fingers, respectively. The instantaneous joint refer-
ence configuration θref

J (t), defined according to the concept of postural synergies,
is computed as

θ̇ref
J (t) = Kgain SP αv σ(t). (9)

The input variable σ(t), that appears in (9), is the myocontrol-driven signal
obtained by applying a dead-zone to ρref(t) defined in (5), that is

σ(t) =


ρref(t)− ρ̄1, if ρref(t) ≤ ρ̄1

0, if ρ̄1 < ρref(t) < ρ̄2

ρref(t)− ρ̄2, if ρref(t) ≥ ρ̄2

, (10)

where ρ̄1 and ρ̄2 are two proper constant threshold values with ρ̄2 > ρ̄1 (in
the experimental tests reported in Sec. 3, ρ̄1 = −0.1 and ρ̄2 = 0.1). The
versor αv ∈ R3 defines the postural synergy subspace of UB Hand (see our
previous work [19]) and it has been obtained by computing αv = (αclosed −
αopen)/(‖αclosed − αopen‖), being αopen and αclosed the hand postures in the
synergy subspace that are closest to the hand configurations “totally open” and
“totally closed”. The matrix SP ∈ RnJ×nS is the robotic hand postural synergy
matrix, where nS = 3 is the number of considered eigenpostures, the reader may
refer to [19] for the details on the computation of that matrix. Finally, the matrix

Kgain = diag(KT , ...,KT︸ ︷︷ ︸
4 times

, ...,Ki, ...,Ki︸ ︷︷ ︸
4times

, ...,KP , ...,KP︸ ︷︷ ︸
4 times

) ∈ RnJ×nJ

where i = {T, I,M,R, P}, contains non-constant gains which are modulated by
the contact force of each finger according to

Ki =


K̄
(

1−γ
γ
|fi|
f̄

+ 1
)
, if |fi| < f̄ for i = {T, I,M}

K̄
γ , if |fi| ≥ f̄ for i = {T, I,M}

0, ∀ |fi| for i = {R,P}

, (11)

in which |fi| ∈ R+ is the norm of the i-th finger force sensor, f̄ is a constant
threshold defining the minimum force value detected when the fingertip contacts
an object, K̄ is the control gain during free-space motions and γ is a scale factor
determining the minimum value of Ki that may occur during the grasping. The
variation of the gain Ki, that plays a central role in this control architecture,
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(a) Values of Ki as a function of the
norm of the contact force.

(b) Example of the duty-cycle modula-
tion of the vibrotactile feedback stimu-
lation.

Fig. 4. Values of Ki and duty-cycle modulation of the vibration motor.

Table 1. Objects used in the experiment.

Object Type Box Cylinder Sphere

Size [mm] 88 × 54 × 54 100 × 75 × 75 65 (radius)

is motivated by a twofold reason: (i) for a given level of the myocontrol signal
the motion of the finger that came into contact with the object is drastically
slowed down, allowing the hand to adapt to the shape of the grasped object,
and (ii) the capability of the user in finely modulating the grasp strength is
highly increased, thanks to the possibility of providing small adjustment to the
robotic hand configuration, see eq. (9). Finally, note that, for i = {R,P}, Ki

has been set to zero because in this study only thumb, index and middle fingers
were equipped with tactile sensors and consequently only tripodal grasps have
been considered. In Fig. 4(a) the value of Ki (for i = {T, I,M}) as a function of
|fi| are shown.

2.4 Sensory Substitution for contact detection

Vibrotactile Feedback In order to implement the robotic hand myocontrol,
the user is provided with a vibrotactile stimulation produced by means of a
vibration motor embedded on the wrist armband of the Noitom Hi5 glove [20]
(see Fig. 3(c)), a wearable device for hand’s finger motion tracking and feedback
stimulation. Note that the motion tracking functionality of the glove is not used
in this work, and only the vibration motor was applied to the wrist of the subjects
during the experimental tests, as illustrated in Fig. 3. This vibration motor
can be controlled via a Bluetooth interface at the maximum rate of 1 Hz by
commanding the vibration duty cycle. Accordingly, the vibrotactile stimulus
was obtained according to a pulse-width modulation strategy, in which the input
signal ν ∈ [0, 1], hereafter called normalized feedback signal, determines the duty-
cycle of the vibration motor activation signal, as illustrated in Fig. 4(b).
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Force Sensing Interpretation The vibrotactile stimulus is provided to the
user on the basis of the normalized feedback signal ν, which depends on an
estimation of internal forces generated by the grasp. Note that with internal
force the forces exerted by the robotic hand fingers that produce zero resultant
forces on the object is meant. Mathematically, these forces are defined as the
force vector which spans the null space of the so-called grasp matrix, typically
denoted with G [21]. In precision tripodal grasps, the thumb fingertip is located
in an opposite configuration with respect to the index and middle fingertips,
and its contact force is therefore counteracted by the other two fingers and
viceversa. Consequently, the force exerted by the thumb at the contact location
represents an good approximation of the applied internal force. For this reason,
its measurement was used to approximate the internal force, and the normalized
force signal was computed as

ν =


||fT |−f̄T |
cnorm

, if
∣∣|fT | − f̄T ∣∣ ≤ cnorm

0, if
∣∣|fT | − f̄T ∣∣ ≤ β

1, if
∣∣|fT | − f̄T ∣∣ > cnorm

, (12)

where cnorm is a normalization constant and β denotes an error band in which the
tracking of f̄T is considered achieved (in our experiment β = 0.03, see Sec. 3.2).
The combination of (12) with the duty cycle modulation of the vibration motor
(Fig. 4(b)) produces the vibrotactile feedback. Note that, since the vibrotactile
feedback depends on the absolute value of the error between estimated and target
grasp strength, during the experiment reported in the following subsection the
user was assisted by a simple visual cue (on a display) informing only about the
sign of the error, see Fig. 5, while the extent of the error was available solely
through the vibrotactile stimulation.

3 Experimental tests

In order to assess the effectiveness of the proposed control architecture, an ex-
periment is conducted involving four näıve able-bodied subjects. The test is
performed in accordance with the Declaration of Helsinki.

3.1 Experimental Setup and Protocol

Figure 5 shows the setup arrangement used in the experimental session. The
subjects are four men between 25 and 35 years old (namely S1, S2, S3, S4),
and none of them experienced myocontrol before. During the experiment, each
subject is seated in front of a desk equipped with the robotic Hand, described
in Subsec. 2.3. A couple of differential sEMG electrodes are placed in proximity
of the FDS and EDC muscles’ belly (see Susec. 2.2), and the vibration motor
described in Subsec. 2.4 is fixed to the forearm in a location close to the wrist.

Initially, during the myocontrol training session, each subject is asked to
fully open and close his hand two times while the sEMG signals are recorded.
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Fig. 5. The experimental setup for the grasp strength regulation experiment.

Then, the system automatically computed the pseudo-inverse of the muscular
synergy matrix S+

M and the scaling constants as described in Sec. 2.2. After the
myocontrol calibration, the grasping strength regulation task starts. When the
myocontrol is connected to the UB Hand, the subject receive the vibrotactile
feedback according to the strategy reported in Sec. 2. In each trial, the subject
is initially requested to keep the robotic hand fully open, until the experimenter
hands the first object out. At this point, the subject is asked to close the robotic
hand in order to grasp the object with the three fingers, see Fig. 3. Once the
object is grasped, the experimenter release the object and the subjects had to
regulate – by exploiting the proposed myocontrol interface – the grasp strength,
according to three given reference levels (f̄T,1 = 0.2 N, f̄T,2 = 0.4 N, f̄T,3 =
0.6 N). Each of the grasping strength level has to be reached and maintained for
a duration of approximately 100 s. Then the target level is changed during the
grasp, i.e. without the subject releases the object. At the end, the experimenter
vocally instructs the subject to release the object (i.e. open the robotic hand) and
take the object back. Three different objects are used during the experiments:
a box, a cylinder and a sphere (supplied in this order), whose dimensions and
images are reported in Tab. 1. Three different grasping and regulation tasks are
carried out for the three different objects. The subject rests 10 minutes after
each task.

The results of the experiment are reported in the following paragraph, using
as metrics the mean and standard deviation of the grasp strengh regulation
profiles over the subjects, and the related settling times as an index of success
in the task execution.

3.2 Grasp Strength Regulation Results

Figure 6 shows the grasping strength signal obtained during the regulation task
of one of the subjects (S4) with the Box object. The graph at the top shows that
after a transient the prescribed grasp strength – well represented by the thumb
force |fT | – was successfully applied by the user regardless of the specific level.
Note the tracking of a reference level is considered successfully achieved when
|fT | enters within an error band equal to ±5% of the higher strength reference
level (0.6 N), i.e. in the range [f̄T,i− 0.03, f̄T,i + 0.03], i = 1, 2, 3, and remains in
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Fig. 6. Signals of the strength regula-
tion with the Box object (sbj. S4).

(a) Box object.

(b) Cylinder object.

(c) Sphere object.

Fig. 7. Mean and standard deviation of
the regulated grasp strength, computed
over the subjects.

this range until a new reference level is provided or until the experiment ends.
The settling time is defined as the time required by the user to successfully reach
the desired grasp strength level.
By focusing on the graph showing the hand closure level σinput in Fig. 6, it is
possible to observe how this signal was intuitively regulated in order to increase
(time instants around 0 s, 100 s, 200 s) or decrease the force (time instants around
30 s, 290 s). This is more clearly shown in the graph plotting σ, the myocontrol-
driven signal given by eq. (10), where the values inside the deadzone are set to
zero.
Finally, the bottom plot of Fig. 6 illustrates how σ is modulated by Kgain: when
|fT | < f̄ (orange dashed line in the top graph of Fig. 6), KT assumes the highest
value, see the case#1 in eq. (11), while when fT ≥ f̄ , i.e. contact with the
object is established, the gain KT quickly decreases to its minimum level equal
to K̄/γ according to case#2 of eq. (11). Accordingly, the signal KT σ becomes
smaller and smaller during the interaction with the object, and therefore the
user capability of modulating the robotic hand joint velocity references becomes
more and more accurate.

The experiments highlight that the behaviour shown in Fig. 6 is replicated by
all the subjects, since all of them successfully regulate the grasping force for all
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the considered reference levels. These results are shown in Fig. 7 in terms of mean
and standard deviation values of the regulated grasp strength, computed over the
subjects. Note that, even if the performances of the users during the transient are
quite different, producing a remarkable variability of the force strength during
this phase, the desired final value is achieved by all the subjects – in terms of
succesful reference tracking, as defined according to the settled time perviously
mentioned in this paragraph –, as shown by the mean and standard deviation
of the regulated grasp strenghs reported in Fig. 7.

4 Conclusions

In this paper, the implementation and the experimental evaluation of a hu-
man machine interface based on a synergy mapping of sEMG measurements
and vibrotactile feedback for the regulation of the grasping strength on an an-
thropomorphic robotic hand is reported. The experiments demonstrate that the
proposed framework allow a fast adaptation to different subjects thanks to a sim-
ple and fast online calibration procedure. Moreover, the synergy-based sEMG
mapping simplified the detection of the human intention, enabling the implemen-
tation of a reliable interface between the human and the robotic hand, at least
for a simple tripodal grasping task. The experimental results highlighted also
that, thanks to the vibrotactile feedback, all the subjects are able to properly
regulate different values of desired grasping strength.

Despite the simplicity of the adopted feedback strategy, the results reported
in this paper are very promising and pave the way toward the extension of the
proposed approach to a wider set of tasks and more advanced and flexible feed-
back techniques. Therefore, future work will be devoted to the experimental
validation of the approach by extending the set of considered grasps and in the
improvement and evaluation of the proposed vibrotactile feedback, as well as
on the investigation of alternative feedback strategies. Finally, a larger set of
subjects will be engaged for future experiments, in order to increase the exper-
imental protocol’s statistical power and provide an analysis of the statistically
significance level of the results for a proper discussion on the generalization of
the reported outcomes.
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